4,313 research outputs found

    Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver

    Get PDF
    [Abstract]: Wireless local area network applications may include the use of bodyworn or handportable terminals. For the first time, this paper compares measurements and simulations of a narrowband 5.2-GHz radio channel incorporating a fixed transmitter and a mobile bodyworn receiver. Two indoor environments were considered, an 18-m long corridor and a 42-m2 office. The modeling technique was a site-specific ray-tracing simulator incorporating the radiation pattern of the bodyworn receiver. In the corridor, the measured body-shadowing effect was 5.4 dB, while it was 15.7 dB in the office. First- and second-order small-scale fading statistics for the measured and simulated results are presented and compared with theoretical Rayleigh and lognormal distributions. The root mean square error in the cumulative distributions for the simulated results was less than 0.74% for line-of-sight conditions and less than 1.4% for nonline-of-sight conditions

    Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

    Get PDF
    There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2. Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz. Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis. The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz

    Legal coercion, respect & reason-responsive agency

    Get PDF
    Legal coercion seems morally problematic because it is susceptible to the Hegelian objection that it fails to respect individuals in a way that is β€˜due to them as men’. But in what sense does legal coercion fail to do so? And what are the grounds for this requirement to respect? This paper is an attempt to answer these questions. It argues that (a) legal coercion fails to respect individuals as reason-responsive agents; and (b) individuals ought to be respected as such in virtue of the fact that they are human beings. Thus it is in this sense that legal coercion fails to treat individuals with the kind of respect β€˜due to them as men’.The Leverhulme Trust (ECF-2012-032); AHRC (AH/H015655/1

    Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe

    Get PDF
    The failure to develop a degenerate, wide band gap, p-type oxide material has been a stumbling block for the optoelectronics industry for decades. Mg-doped LaCuOSe has recently emerged as a very promising p-type anode layer for optoelectronic devices, displaying high conductivities and low hole injection barriers. Despite these promising results, many questions regarding the defect chemistry of this system remain unanswered, namely (i) why does this degenerate semiconductor not display a Moss–Burnstein shift?, (ii) what is the origin of conductivity in doped and un-doped samples?, and (iii) why is Mg reported to be the best dopant, despite the large cation size mismatch between Mg and La? In this article we use screened hybrid density functional theory to study both intrinsic and extrinsic defects in LaCuOSe, and identify for the first time the source of charge carriers in this system. We successfully explain why LaCuOSe does not exhibit a Moss–Burstein shift, and we identify the source of the subgap optical absorption reported in experiments. Lastly we demonstrate that Mg doping is not the most efficient mechanism for p-type doping LaCuOSe, and propose an experimental reinvestigation of this system

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive

    Mendelian and Non-Mendelian Regulation of Gene Expression in Maize

    Get PDF
    Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73Γ—Mo17 recombinant inbred line population. RNA-based sequencing (RNA-seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL "hotspots," each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants. Β© 2013 Lin et al

    Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds

    Get PDF
    Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Ξ”kw) over a range of wind speeds up to 21β€―mβ€―sβˆ’1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Ξ”kw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Ξ”kw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange

    Open source Direct Simulation Monte Carlo (DSMC) chemistry modelling for hypersonic flows

    Get PDF
    An open source implementation of chemistry modelling for the direct simulation Monte Carlo (DSMC) method is presented. Following the recent work of Bird [1] an approach known as the quantum kinetic (Q-K) method has been adopted to describe chemical reactions in a 5-species air model using DSMC procedures based on microscopic gas information. The Q-K technique has been implemented within the framework of the dsmcFoam code, a derivative of the open source CFD code OpenFOAM. Results for vibrational relaxation, dissociation and exchange reaction rates for an adiabatic bath demonstrate the success of the Q-K model when compared with analytical solutions for both inert and reacting conditions. A comparison is also made between the Q-K and total collision energy (TCE) chemistry approaches for a hypersonic flow benchmark case
    • …
    corecore